Producing more with less: Strategies and novel technologies for plant-based food biofortification
نویسندگان
چکیده
a r t i c l e i n f o About half of the world population suffers from the malnutrition of iron, zinc, calcium, iodine and selenium. Most of the major staple crops of the world, such as rice, wheat, cassava, beans, sweet potato, pearl millet or maize are often deficient in some of these mineral elements. Hence, increasing the concentration of bioavail-able micronutrients in edible crop tissues (biofortification) has become a promising strategy in modern agriculture , allowing the access of more nutritious foods, to more people, with the use of fewer resources. Traditional agricultural practices can partly enhance the nutritional value of plant foods, but the advances in the 'omics' technologies are rapidly being exploited to engineer crops with enhanced key nutrients. Ionomics, or the study of the ionome (which can be defined as the mineral trace element composition of a particular organism), is a modern functional genomics tool that can provide high throughput information about the broad spectrum nutrient composition of a given plant food. In alliance with other 'omics' technologies , such as genomics, transcriptomics and proteomics it can be used to identify numerous genes with important roles in the uptake, transport and accumulation of mineral nutrients in plant foods, in particular in their edible parts. This review provides a critical comparison of the strategies that have been developed to diminish nutrient deficiencies in plant-based foods (SWOT analysis) and a summary of the gene families involved in the mineral nutrient pathways. Finally, it also discusses how 'omics' techniques can be used in genetic engineering programs to increase mineral levels and bioavailability in the most important staple food crops and the socioeconomic implications of plant-based biofortified foods.
منابع مشابه
Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet
Biofortification is a plant breeding method that introduces increased concentrations of minerals in staple food crops (e.g., legumes, cereal grains), and has shown success in alleviating insufficient Fe intake in various human populations. Unlike other strategies utilized to alleviate Fe deficiency, studies of the gut microbiota in the context of Fe biofortification have not yet been reported, ...
متن کاملPlant metabolomics and its potential application for human nutrition.
With the growing interest in the use of metabolomic technologies for a wide range of biological targets, food applications related to nutrition and quality are rapidly emerging. Metabolomics offers us the opportunity to gain deeper insights into, and have better control of, the fundamental biochemical basis of the things we eat. So doing will help us to design modified breeding programmes aimed...
متن کاملBiofortification: how can we exploit plant science and biotechnology to reduce micronutrient deficiencies?
Throughout the developing world, the long-term consequences of insufficient amounts of essential micronutrients in the human diet can be more devastating than low energy intake. Micronutrients are involved in all aspects of development, growth, and physiology of the human body (including from early embryonic stage), and their deficiencies can cause birth defects, permanent physical and mental i...
متن کاملRice Enrichment by Genetic Engineering for Combating Iron and Zinc Deficiency
Iron deficiency anemia and zinc deficiency are among the most recognized forms of micronutrient malnutrition and about two billion of people around the world suffer from it. Monotonous diets based on staple cereals are in fact a poor source of iron and zinc. Rice is a staple food for more than half of the world's population. Various methods have been proposed for food enrichment, but many of t...
متن کاملBiofortification and phytoremediation of selenium in China
Selenium (Se) is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium phytoremediation is a green biotechnology to clean ...
متن کامل